CHEST PHYSIOTHERAPY FOR ACUTE BRONCHIOLITIS IN PAEDIATRIC PATIENTS BETWEEN 0 AND 24 MONTHS OLD

Perrotta C, Ortiz Z, Roque M

This review should be cited as: Perrotta C, Ortiz Z, Roque M. Chest physiotherapy for acute bronchiolitis in paediatric patients between 0 and 24 months old (Cochrane Review). In: The Cochrane Library, Issue 2, 2005. Oxford: Update Software.

A substantive amendment to this systematic review was last made on 18 February 2005. Cochrane reviews are regularly checked and updated if necessary.

ABSTRACT

Background: Acute bronchiolitis is the leading cause of medical emergencies during winter in children younger than two years of age. Chest physiotherapy is thought to assist infants in the clearance of secretions and decrease ventilatory effort.

Objective: To determine the efficacy and safety of chest physiotherapy in infants aged less than 24 months old with acute bronchiolitis.

Search strategy: We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library Issue 2, 2004) which contains the Acute Respiratory Infection Group’s specialised register; MEDLINE (January 1966 to June 2004); EMBASE (1990 to June 2004); PASCAL; SCISEARCH; LILACS; and Cumulative Index to the Nursing & Allied Health Literature (CINAHL) (1982 to May 2004).

Selection criteria: Randomised controlled trials (RCTs) in paediatric patients younger than twenty four months old in which chest physiotherapy was compared against no intervention or against another type of physiotherapy.

Data collection and analysis: Two independent reviewers extracted the data. Primary outcome was a severity clinical score. Secondary outcomes were length of hospital stay, duration of oxygen supplementation, and the use of bronchodilators and steroids.

Main results: Three clinical trials met the inclusion criteria. All evaluated vibration and percussion techniques in postural drainage positions compared to no intervention. The study population were hospitalised infants with a clinical diagnosis of acute bronchiolitis, although one study included only infants who required nasogastric tube feeding or intravenous fluids. None of the other included trails observed any differences in the severity of the clinical score at day five or during each of the five days of the trial or until discharge, length of hospital stay, or oxygen requirements between chest physiotherapy group and control.

Reviewers’ conclusions: Based on the results of three RCTs, chest physiotherapy using vibration and percussion techniques does not reduce length of hospital stay, oxygen requirements, or improve the severity clinical score in infants with acute bronchiolitis that are not under mechanical ventilation, and who do not have any other co-morbidity. Chest physiotherapy using forced expiratory technique needs to be evaluated by clinical research.

BACKGROUND

Acute bronchiolitis is the leading cause of medical emergencies during winter in children younger than two years of age. Results in high utilisation of health care resources, overcrowding of hospitals during epidemic seasons and significant morbidity to infants. Infant mortality rates vary, depending upon the population. In the USA between 1996 and 1998, the incidence was reported as 2.0 per 10,000 live births (Holman 2003).

Criteria for diagnosing acute bronchiolitis vary greatly. Most doctors agree that the case definition for an episode of acute bronchiolitis should include the first episode of acute wheezing to occur at 24 months or younger, plus accompanying physical findings of viral infection (for example coryza, cough and fever) (González 2001; Videla 1998; Wainwright 2003). Some doctors add to this definition that pneumonia or atopy was ruled out as the cause of wheezing (Mc Millan 1994), while other doctors cite only the first episode of acute wheezing as diagnostic criteria for acute bronchiolitis (Roosvelt 1996).

The most common virus identified with the disease is respiratory syncytial virus (RSV). Other pathogens frequently identified are parainfluenza virus, adenovirus, Mycoplasma pneumoniae (M. pneumoniae), influenza virus, and human metapneumovirus (Galiano 2004; Videla 1998). Pathological changes in acute bronchiolitis are necrosis of the respirator epithelium with destruction of ciliated epithelial cells followed by peri-bronchial infiltration with lymphocytes. The consequences are bronchial wall oedema, mucous production and the impairment of clearance of mucus leading to obstruction of small airways with dense plugs of mucous, fibrin and alveolar debris (Welliver 2003).

Most cases of acute bronchiolitis are mild and can be treated on an outpatient basis; one to three per cent (depending on the seriousness) will require hospitalisation (Mc Millan 1994). Risk factors associated with hospitalisation and more severe disease are premature birth; chronic lung disease; congenital heart disease; and a deficient immune system (Wallis...
In developing countries the most frequent risk factors associated with hospitalisation and severe disease are: living in a low income family; malnourishment; low birth weight; age of the mother; education level of the mother; being bottle fed and premature birth (Spencer 1996).

The standard treatment of acute bronchiolitis is to assure adequate oxygen exchange, fluid intake and feeding of the infant. Pharmacological strategies used in acute bronchiolitis are bronchodilators and steroids. However, at present the effectiveness of these interventions remains uncertain. A Cochrane review concluded that bronchodilators produce modest short-term improvement in clinical scores of mild or moderately severe bronchiolitis (Kellner 1998). Another Cochrane review assessed the benefits of steroids in patients with acute bronchiolitis and found that most well-designed studies showed no benefit with either inhaled or systemic corticosteroids (Patel 2004).

Chest physiotherapy in paediatric respiratory diseases has been used to assist in the clearance of tracheo-bronchial secretions. The main goal is to clear the airway obstruction, reduce airway resistance, enhance gas exchange and reduce the work of breathing. Different techniques are used in paediatric patients: chest percussion, vibration in postural drainage positions, chest shaking, directed coughing and slow passive forced exhalation. Its utilisation varies between countries and regions. In France, the passive forced exhalation techniques are widely used with an 82.5% to 99% utilisation per centrage and are recommended by consensus panel (Beauvois 2001; Consensus 2001). In other countries the utilisation is lower and the most common techniques performed are vibration and chest percussion (Beauvois 2001). Chest physiotherapy has been linked to adverse events and some concerns have arisen in the literature about the safety of the procedure especially in relation to rib fractures (Beeby 1998; Chalumeau 2002). The aim of reviewing clinical research was to help to clarify the evidence.

OBJECTIVES

The objective of this review was to determine the effectiveness and safety of chest physiotherapy in infants aged less than 24 months old with acute bronchiolitis.

CRITERIA FOR CONSIDERING STUDIES FOR THIS REVIEW

Types of studies

We included randomised controlled trials (RCTs) evaluating chest physiotherapy in acute bronchiolitis.

Types of participants

Infants younger than 24 of age with acute bronchiolitis as defined by the studies' authors and in all settings.

Types of intervention

We included trials that compared any type of chest physiotherapy (postural drainage, chest percussion, vibration, chest shaking, directed coughing or forced exhalation technique) versus standard care (excluding chest physiotherapy); or other drainage or breathing techniques.

Types of outcome measures

Primary outcomes

(1) Change in the severity status of bronchiolitis
(2) Oxygen saturation levels
(3) Transcutaneous PCO2

Secondary Outcomes

(1) Oxygen supplementation duration.
(2) Length of hospital stay
(3) Use of bronchodilators and steroids

Adverse events

These were defined as any injury resulting from chest physiotherapy, for example rib fractures, and long term neurological outcomes. All the outcomes were taken into consideration. We described the method used to measure them.
SEARCH STRATEGY FOR IDENTIFICATION OF STUDIES

See: Cochrane Acute Respiratory Infections Group search strategy

We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library Issue 2, 2004) which contains the Acute Respiratory Infection Group's specialised register; MEDLINE (January 1966 to June 2004); EMBASE (1990 to June 2004); PASCAL; SCISEARCH; LILACS; and Cumulative Index to the Nursing & Allied Health Literature (CINAHL) (1982 to May 2004).

The following search strategy was run over CENTRAL. The highly sensitive search strategy filter (Dickersin 1994) was combined with the following search strategy and run over MEDLINE. The disease and intervention terms were adapted for searching the other electronic databases:

MEDLINE (OVID)

1 exp BRONCHIOLITIS
2 exp Bronchiolitis, Viral/
3 bronchiolitis.mp.
4 exp Respiratory Syncytial Viruses/
5 exp Respiratory Syncytial Virus Infections/
6 respiratory syncytial virus$.mp.
7 exp Physical Therapy Techniques/
8 chest physiotherapy.mp.
9 exp Drainage, Postural/
10 postural drainage.mp.
11 chest percussion.mp.
12 exp VIBRATION/
13 vibration.mp.
14 chest shaking.mp.
15 directed coughing.mp.
16 forced exhalation.mp.
17 exp Breathing Exercises/
18 breathing exercise$.mp.
19 or/1-6
20 or/7-18
21 19 and 20

Searches was limited to human studies and there were no language restrictions. We examined reference lists of general paediatric, infectious diseases, pneumatology and physiotherapy textbooks. We reviewed reference lists of all selected articles and recent review articles, and also examined published abstracts from the Pediatric Academic Societies' Annual Meeting (US) 1999 to 2003. We hand searched the French journals: Journal Pédiatrie Puériculture (1999 to May 2004) and Archives de Pédiatrie (1994 to 1997; 2000 to May 2004).

METHODS OF THE REVIEW

Study selection

Two independent reviewers (CP and MR) screened the initial search of all the databases and references lists to identify citations which seemed relevant to this review. Once pertinent abstracts or titles were identified, the full text articles were obtained. Two reviewers independently decided on which trials to include using a standard form (CP and MR). There were no disagreements in relation to the included trials.

Assessment of quality

The assessment of quality included the analysis of allocation, performance bias, analysis of losses to follow up or withdrawals and analysis of outcome assessment (whether the person who performed the outcome assessment was blinded or not to the intervention).
Two reviewers assessed the studies (CP and MR). Each RCT was rated according to the quality of allocation concealment categories.

Category A: adequate concealment

Category B: uncertain, indication of adequate

Category C: inadequate concealment

Data extraction

Two reviewers extracted the data (CP and MR).

A standard form was used to extract data:

- characteristics of the study (design, method of randomisation, withdrawals, drop outs);
- participants (age, gender, low birth weight or normal weight, ambulatory or hospital patient, disease severity nutritional status);
- intervention (type of chest physiotherapy, administration, co-interventions), and its comparison;
- outcomes: (types of outcome measures, timing of outcomes, adverse effects);
- results.

Data analysis

The extracted data were insufficient to perform a meta-analysis. We described the individual results with the effect measures described in the original trials.

DESCRIPTION OF STUDIES

The search strategies identified six studies that evaluated chest physiotherapy for acute bronchiolitis. Three studies were excluded as they were not RCTs (see Characteristics of excluded studies). Bernard-Narbone (Bernard-Narbone 2003) was a before and after study conducted in mechanically ventilated infants in a intensive care unit in France, and the end point were short term oxygenation parameters. Belcastro (Belcastro 1984) was an open pilot study with 12 patients and did not meet the quality criteria for inclusion. Finally, Quitell (Quitell 1988) was a before and after study which measured physiological parameters.

The included studies were RCTs, two studies were carried out in the UK (Nicholas 1999; Webb 1985), and one in Argentina (Bohe 2004). All three evaluated the efficacy of chest physiotherapy in hospitalised infants with a clinical diagnosis of acute bronchiolitis. Nicholas (Nicholas 1999) included more seriously ill infants who required nasogastric feeding or intravenous fluid.

Webb (Webb 1985) recruited 90 infants with a mean age of 4.6 months (range 0 months to 15 months). Forty-four infants were allocated to physiotherapy and forty-six infants to the control group. The two groups were similar with regard to age; sex; severity score on admission; proportion who were respiratory syncytial virus positive (overall proportion 69%); proportion with a first degree family history of atopy (overall proportion 36%); and those participants with smokers in the household (overall proportion 66%). The intervention tested consisted of “chest percussion with a cupped hand for three minutes in each of five postural drainage positions followed by assisted coughing” or “gentle oropharyngeal suction performed twice each day while in the hospital”. Three independent medical doctors made clinical assessments of the severity of the illness at a fixed time every day. A score of 0 to three was allocated for each of ten clinical signs: heart rate, respiratory rate, hyperinflation, use of accessory muscles, recession, rhinitis, wheeze, cough, crepitations and rhonchi, giving a total severity clinical score of a maximum of thirty points. At hospital discharge, parents were asked to maintain a symptom record diary, and children were reviewed in outpatient clinics after two weeks. The main outcomes were: clinical score on admission, every day, and after five days, length of hospital stay, and total length of illness. Results were expressed as median and range. The study author was unable to provide the mean and standard deviation each parameter because the raw data were no longer available.

In the other included trial, Nicholas (Nicholas 1999) randomly allocated 50 infants to control or treatment groups, their mean age of 2.8 months (range 0.4 months to 7.6 months). The physiotherapy protocol established manual techniques of percussion and vibrations performed in postural drainage positions, and possible modifications required in relation to infant tolerance. The main outcomes were clinical status and length of hospital stay. Secondary end points were oxygen requirements and change in oxygen saturation levels after physiotherapy. (These outcomes were measured only in the intervention arm). The physiotherapy protocol was described in terms of the infant general position, the postural drainage, the technique used (percussion or vibration according to the infant distress), the frequency of suction, and oxygen supply during treatment. Results were expressed using mean, but standard deviations were not reported. The study author could not provide clarification as she was no longer in possession of the complete database.

In Bohe (Bohe 2004) 16 infants were randomly allocated to the physiotherapy group and 16 to the control group. Patients were included if they had clinical diagnosis of acute bronchiolitis defined by an acute upper respiratory infection plus fever tachypnoea or increase of the respiratory effort. The intervention was percussion, postural drainage, vibration and nasopharyngeal aspiration twice a day. The control group received only nasopharyngeal aspiration. The end points were length of hospital stay and a severity score constructed out of five clinical variables: respiratory rate, heart rate, lung auscultation and accessory muscles use. A physiotherapist unaware of the intervention evaluated each participant. The
Mean age of the participants was 2.8 months, 65.5% were boys and 34.4% girls. Overall 78.1% were positive with RSV.

Methodological Quality

Webb (Webb 1985) performed a random allocation of the intervention. The physicians that assessed clinical outcomes were intended to be blinded to the treatment status. The clinical assessment was made at a fixed time each day. Sample size was not described.

Nicholas (Nicholas 1999) had also randomly allocated patients to the intervention. The original paper did not state if the clinical status was assessed in a blinded fashion, and sample size was not calculated.

Bohe (Bohe 2004) was similar to the other two studies. Patients were randomly allocated, clinical status was assessed in blinded fashion and assessment was made at a fixed time each day - at least one hour after the chest physiotherapy.

The overall quality in relation to randomisation, allocation and outcome assessment was good. The main flaws of the studies were inadequate reporting of results, lack of estimation of sample size and the use of clinical scores that were not properly validated.

Results

Primary Outcomes

Respiratory parameters

Studies did not evaluate oxygen saturation levels or transcutaneous PCO2 as an outcome measure between intervention and control group.

Change in status of severity of bronchiolitis

Nicholas and Webb (Nicholas 1999; Webb 1985) assessed this outcome using the clinical score described above. In the Webb (Webb 1985) study the clinical score was similar in both groups at baseline and in each of the first five days of assessment at the hospital. In the control group the median score on admission was 12 (range 4 to 24) in 46 patients and in the physiotherapy group the median score was 10 (range 4 to 22) in 44 patients. On the fifth day, 18 patients remained in hospital with a median score of five (range 1 to 11) in the control group, and 11 patients in the physiotherapy group, with a median score of six. There were no statistically significant differences between groups in relation to the clinical score to the proportion who remained in hospital at day five.

Nicholas (Nicholas 1999) expressed clinical scores using means, but did not report standard deviations. There were no differences in the admission mean clinical score (intervention group = 9.1 versus control group = 10.86) between group. The authors reported that clinical scores did not show any statistically significant difference between groups during the five day trial. Data were provided on a graph, but it could not be extracted. Authors described this data in a figure where it was not possible to extract means and standard deviation. Bohe (Bohe 2004) used a different severity clinical score to the one use in the other two trials. The score was similar at baseline between the two groups and at day five or day of discharge the score was 3.25 (standard deviation (SD) 1.27) in the physiotherapy group and 3.12 (SD 1.15) in the control group (WMD = 0.13, 95% CI -0.71 to 0.97).

Secondary Outcomes

Duration of oxygen supplementation

Nicholas (Nicholas 1999) found that the mean hours with supplemental oxygen in the control group was 63 (range 2.3 hours to 128 hours) and 86 (range 36 hours to 148 hours) in the physiotherapy group. Differences were reported as not significant using a non-parametric test.

Length of hospital stay

Webb (Webb 1985) showed a median length of hospital stay of four days (range 1 day to 15 days) in the control group and a median of four days (range 2 days to 11 days) in the physiotherapy group, with no statistical differences between groups.

In the Nicholas (Nicholas 1999) study the mean length of hospital stay was 6.6 days (range 2.3 days to 11.5 days) in the control group and 6.7 days (range 3 days to 9.5 days) in the physiotherapy arm. Authors did not find any statistically significant differences.

In the Bohe (Bohe 2004) study the mean length of hospital stay was 4 days (SD 2) in the treatment group an 3.87 days (SD 1.3) in the control arm. There were no statistically significant differences between them (WMD 0.13; 95% CI -1 to 1.26).

Use of bronchodilators and steroids
The rationale for the use of chest physiotherapy in infants with acute bronchiolitis is that it will enhance clearance of secretions and improve oxygenation parameters. Those who are against its routine use claim that it might cause distress to the infant and the benefits are not substantial. The use of chest physiotherapy in the treatment of acute bronchiolitis varies among countries and institutions. While in some countries it is a standard practice and doctors feel unethical if they do not provide this practice, in other countries it is not standard practice and physiotherapists are not part of the regular staff taking care of these infants. The evidence for and against its use is weak. The three trials we analysed in this systematic review did not support the use of chest physiotherapy in acute bronchiolitis. The question is whether these trials are robust enough to address this question or whether further research is needed.

Unfortunately, it was not possible to pool the data from the trials since they were summarised using different central tendency measures. Pooling the data would have added sample size, diminishing the probability of a type II error. There were two main outcomes evaluated in the three trials: length of hospital stay and clinical scores. The length of hospital stay is unlikely to be the cause of a lack of power since Nicholas (Nicholas 1999) and Webb (Webb 1985) have adequate sample sizes to find at least one day's difference between the groups. In the case of the change of clinical score, lack of power could be a possible explanation, considering that the authors did not clearly state the magnitude of effect they looked for in this outcome. Outcome selection is a key issue when addressing the efficacy of chest physiotherapy. Length of hospital stay is unlikely to be decreased by the use of chest physiotherapy. Bronchiolitis is a self-limiting disease and usually the patient is discharged between day three and day four. It is unlikely that chest physiotherapy will change its evolution. The clinical status assessment, using well validated instruments, seems a more valid outcome.

Another important flaw of the trials was the lack of a valid placebo. Since the trials had a non-intervention group, the researchers would have been expected to establish an outcome assessment procedure that prevented bias. The main outcomes in the three trials were clinical status, length of hospital stay and, in the case of Nicholas (Nicholas 1999), oxygen requirements. However, clinical assessment blinding was not clearly described. Although the selection of an appropriate placebo is an important point for future research, it does not seem to have a relevant impact on the results observed in the included trials.

An important issue in any intervention assessment is safety. None of the trials included in this review reported adverse events. Bohe (Bohe 2004) reported that one patient in the control arm withdrew from the study because he developed a basal atelectasia. Adverse events reported in the literature are a brain lesion, namely encephaloclastic porencephaly (ECPE), i.e. extremely pre-term infants and rib fractures. This lesion was suggested in a retrospective case control study by Harding (Harding 1998), but in later larger studies (Beeby 1998; Knight 2001) this was not found to be the case. Some observational studies in the literature that suggest an association between rib fractures and chest physiotherapy (Chalumeau 2002). Until more evidence arises from the association of chest physiotherapy and rib fractures, it would be advisable that those centres that use chest physiotherapy regularly perform a surveillance study in vulnerable infants.

Currently, there are two different approaches to physiotherapy: one relies on percussion and vibration techniques, and the other acts through the passive acceleration of expiratory flux, with the goal to trigger coughing and help to move secretions. This last technique is widely used in France. It is to be noted that all the trials included in this review applied percussion and vibration techniques, and thus the conclusions derived from this review may not be applicable to gentler approaches to physiotherapy. At present there are two on-going trials to assess the efficacy of chest physiotherapy in acute bronchiolitis (one in France and one in Spain, see Characteristics of ongoing studies). Both of these trials are evaluating the expiratory forced technique. The results of the two on-going trials could cast some light on the efficacy and safety of these techniques.

The use of chest physiotherapy is not recommended in published clinical guidelines (González 2001; Perstein 1999). These clinical guidelines are based on the first two trials (Nicholas 1999; Webb 1985) and expert recommendations. The University of Cincinnati developed and tested a clinical guideline for the treatment of bronchiolitis where chest physiotherapy was not recommended for acute bronchiolitis. The use of chest physiotherapy (among others therapies) was reduced after the implementation of the guideline, while outcomes (length of hospital stay, mortality, oxygen requirements, admission to intensive care units) remained unchanged (Perstein 1999). In France, the use of chest physiotherapy in acute bronchiolitis is recommended by expert consensus (Beauvois 2001; Consensus 2001; Delaunay 1998).

In conclusion, vibration and percussion techniques have not shown to reduce length of hospital stay in acute bronchiolitis or to improve a severity clinical score. Further research is needed to evaluate other types of physiotherapy and it would be essential that authors choose their outcome measures accurately and state in advance the benefits they expect to gain from the intervention.
REVIEWERS’ CONCLUSIONS

Implications for practice

Based on these three trials, chest physiotherapy using percussion and vibration techniques, could not be recommended for hospitalised infants with acute bronchiolitis.

Implications for research

For future research several issues would need to be addressed. Firstly, which type of physiotherapy (if indeed there is one) is effective. The acceleration of expiratory flux deserves further clinical research. The use of chest physiotherapy in an outpatient basis also needs to be evaluated. Another important concern is the lack of a valid placebo for chest physiotherapy. In cases where the use of placebo is complex, outcome assessments need to be as unbiased as possible and clearly reported. The best way to do this is to use a blinded observer.

Outcome selection also deserves further thought. Length of hospital stay does not seem to be an appropriate end point. Bronchiolitis is a self-limiting disease and usually the patient would be discharged between day three and four. It’s unlikely that chest physiotherapy will change its evolution. However, we would expect the infant to go through the process as undisturbed as possible. The way in which discomfort is measured is the key issue. The most useful clinical severity scores are probably those that measure respiratory effort, oxygen saturation and oxygen requirements ([Wainwright 2003](#)) and those that can have prior psychometric validation data.

Finally, adverse events such as rib fractures need to be surveyed in centres where chest physiotherapy is a common procedure.

ACKNOWLEDGEMENTS

Iberoamerican Cochrane Center and "Centro de Investigaciones Epidemiológicas"- Academia Nacional de Medicina de Buenos Aires, Argentina. Partial funding by The Child Health Field, Cochrane Collaboration. We also acknowledge Dr Mariano Gallo’s contribution to the protocol development.

POTENTIAL CONFLICT OF INTEREST

None known.

TABLES

Characteristics of included studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Methods</th>
<th>Participants</th>
<th>Interventions</th>
<th>Outcomes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bohe 2004</td>
<td>Patients were randomly allocated to control and intervention. Children were assessed every day in the evening.</td>
<td>Infants admitted to the hospital with a clinical diagnosis of acute bronchiolitis. 16 were allocated to the control group and 16 to the intervention arm</td>
<td>Vibration and postural drainage techniques twice a day.</td>
<td>Lengh of stay (days): 4 ± 2 (intervention) 3.87 ± 1.3 (control) clinical score</td>
<td>One patient in the intervention group was withdrawn after developing atelectasia.</td>
</tr>
<tr>
<td>Nicholas 1999</td>
<td>Patients were randomly allocated to control and treatment groups using a random sequence number.</td>
<td>Infants admitted to the hospital with a clinical diagnosis of acute bronchiolitis and with respiratory distress severe enough that required nasogastric tube feeding or intravenous fluids. 24 were allocated to control group and 26 to treatment. Mean age: Control group: 3.2 (range 0.4 to 8.3) ; intervention 2.4 (range 0.4 to 6.9) RSV positive control = 79% , intervention: 85%.</td>
<td>Physiotherapy arm: Patient is treated on physiotherapist’s knee, percussion and vibration in right side lying, left side lying and sitting; suction performed after each side if necessary until clear; no oxygen required during treatment. Modifications were allowed if patient did not tolerate procedure. Oxygen was allowed depending on infant tolerability.</td>
<td>Clinical score: data not reported Length of stay (days): mean 6.6 control (2.3 to 11.5) and 6.7 (3 to 9.1) intervention Nasogastric feeds - mean control 92 hours (range 8 to 225) intervention: 86 (range 36 to</td>
<td></td>
</tr>
</tbody>
</table>
Characteristics of excluded studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Reason for exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belcastro 1984</td>
<td>Not a randomised clinical trial. This was a pilot study done in 12 patients. Trialists intended to compare osteopathic manipulative treatment against postural drainage but the study was not designed as a clinical trial.</td>
</tr>
<tr>
<td>Bernard-Narbone 2003</td>
<td>Before and after study. Twenty infants less than 30 weeks (mean 9 SD 7) Patients were in mechanic ventilation. Intervention: forced expiration technique Short term outcomes: Oxygen saturation rise from 94.5 +/− 3.8 to 97.5 +/− 10.5 Inspiratory tidal volume: 55.4 +/− 16 to 63.6 +/− 20 Expiratory tidal volume. 53.15 +/− 16 62.3 +/− 21</td>
</tr>
<tr>
<td>Quitell 1988</td>
<td>Before and after study. Thirteen infants between 2 and 6 weeks of age entered in the study. Short term outcomes.</td>
</tr>
</tbody>
</table>

Characteristics of ongoing studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Trial name or title</th>
<th>Participants</th>
<th>Interventions</th>
<th>Outcomes</th>
<th>Starting date</th>
<th>Contact information</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gajdos 2004</td>
<td>Chest physiotherapy for acute bronchiolitis</td>
<td>Patients less than two years old</td>
<td>Two chest physiotherapy techniques</td>
<td>Length of stay Severity clinical score</td>
<td>September 2004 Paris, France</td>
<td>vincent.gajdos@abc.aphop-paris.fr</td>
<td>Information by e-mail correspondence</td>
</tr>
<tr>
<td>Galvany 2004</td>
<td>Chest Physiotherapy for acute bronchiolitis</td>
<td>Hospitalised patients. less than two years old. Virus syncyntial respiratory positive</td>
<td>Forced expiratory technique</td>
<td></td>
<td>November 2003 Pilot study enrolled 30 patients</td>
<td>nurialopez@sumi.es</td>
<td></td>
</tr>
</tbody>
</table>

References to studies included in this review

Bohe 2004 *(published data only)*

Bohe L, Ferrero ME, Cuestas E, Polliotto L, Genoff M. Indications of conventional chest physiotherapy in...

Nicholas 1999 {published data only}

Webb 1985 {published data only}

* indicates the major publication for the study

References to studies excluded from this review

Belcastro 1984

Bernard-Narbonne 2003

Quitell 1988

Ongoing studies

Gajdos 2004

Galvany 2004

nurialopez@sumi.es. Chest Physiotherapy for acute bronchiolitis. Ongoing study November 2003 Pilot study enrolled 30 patients.

Additional references

Beauvois 2001

Beeby 1998

Chalumeau 2002

Consensus 2001

Agence nationale d’accréditation d’évaluation en santé. Conférence de consensus sur la bronchiolite du

Delauna 1998

Delaunay JP. Consensus conference in chest physiotherapie. Role of the different non instrumentals techniques to descomprise the bronchies [Conférence de consensus en kinésitherapie respiratoire. Place respective des différentes techniques non instrumentales de désencombrement bronchique]. Cahiers de Kinesitherapie 1998;192(4):14-22.

Dickersin 1994

Galiano 2004

González 2001

Harding 1998

Holman 2003

Kellner 1998

Knight 2001

Mc Millan 1994

Patel 2004

Perlstein 1999

Roosvelt 1996

Spencer 1996

Videla 1998

Wainwright 2003

Wallis 1999

Welliver 2003

COVER SHEET

Chest physiotherapy for acute bronchiolitis in paediatric patients between 0 and 24 months old

Reviewer(s) Perrotta C, Ortiz Z, Roque M

Contribution of Reviewer(s) Carla Perrotta (CP) wrote the protocol. Zulma Ortiz (ZO) and Marta Roque (MR) both commented on, and corrected the protocol. Dr Mariano Gallo contributed to the protocol development. Marta Roque and Carla Perrotta extracted the data for the review. Carla Perrotta wrote the review.

Issue protocol first published 2004 issue 3

Issue review first published 2005 issue 2

Date of last minor amendment 21 January 2005

Date of last substantive amendment 18 February 2005

Most recent changes Information not supplied by reviewer

Date new studies sought but none found Information not supplied by reviewer

Date new studies found but not yet included/excluded Information not supplied by reviewer

Date new studies found and included/excluded 10 June 2004

Date reviewers' conclusions section amended Information not supplied by reviewer

Contact address Dr Carla Perrotta Pacheco de Melo 3081 Buenos Aires
SYNOPSIS

Acute bronchiolitis is a frequent viral respiratory infection in children younger than two years old. Most children have a mild disease and do not require hospitalisation. Those who need to be hospitalised sometimes have difficulties clearing their respiratory secretions. Chest physiotherapy is used to assist in the clearance of secretions and helps them to breathe and this review looked at the effectiveness of chest physiotherapy in acute bronchiolitis. Chest physiotherapy does not reduce the length of hospital stay in acute bronchiolitis. There is no good evidence for or against the improvement of clinical scores. Further research is needed to assess the efficacy of chest physiotherapy in this condition.